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1 Introduction
• Motivation: To extend existing SAT benchmarks.

• Intuition: G2SAT is a model to predict the distribution of literals and clauses in LCGs. It splits LCGs
into trees in training phase and merge the trees into larger LCGs in inference phase. Hence, G2SAT has
the capability to generate LCGs which preserves the properties of training LCGs, making it possible
to generate LCGs with specific desired properties.
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3 Prerequisites
3.1 SAT

• SATisfiability problem is the first NP-Complete problem proved.

• A SAT formula ϕ is a composition of Boolean variables xi connected with logical operators ∨, ∧, ¬.

∃xi, ϕ(xi) = 1,⇒ ϕ is satisfiable. (1)

• CNF(Conjunctive Normal Form): (x1 ∨ x2 ∨ . . . ) ∧ (xc ∨ x2 ∨ . . . )

3.2 LCG
• LCG(Literal-Clause Graph): Node←Literal xi, Clauses xi ∧ xj . Edge← xi ⇔ xi ∨ xj . LCGs can be

presented in Bipartite graphs where the vertex set can be splitted into a vertex set of literals and a
vertex set of clauses.

G = (V, E),⇒ V = V2 ∪ V1
V1 = {l1, . . . , ln},V2 = {c1, . . . , cm}

(2)

where there are n literals and m clauses in the LCG.
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3.3 Graph Splitting and Merging
•

NodeSplit(u,G)⇒ (u, v,G′)

NodeMerge(u, v,G)⇒ (u,G′)
(3)

Hence, the split-merge operation is symmetric.

4 Generate Bipartite Graph Iteratively: Split
• Objective: distribution over graph p(G)

• Use Markov property p(Gi|Gi−1) = p(Gi|G1, . . . , Gi−1) to predict p(G) iteratively

p(G) =

n∏
i=1

p(Gi|G1, . . . , Gi−1) (4)

where Gi−1 denotes intermediate results.

• Under a sequence of split operations, a bipartite graph can be transformed into a set of trees.

5 Generate Bipartite Graph Iteratively: Merge
•

p(Gi|Gi−1) = p(NodeMerge(u, v,Gi−1)|Gi−1)

= Multinomial(hT
uhv/Z|∀u, v ∈ VGi−1

2 )
(5)

where Z is a normalization term.

• Under a sequence of merge operations, a bipartite can be generated from a set of trees.
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6 Embedding via GraphSAGE
• GraphSAGE is a graph convolutional network with inductive learning capability across different graphs

and embedding unseen data.

• 3 node types to be embedded: positive literals, negative literals, clauses.

• embedding of node u at n-layer of GraphSAGE

nl
u = MeanPooling(ReLU(Qlhl

v + ql|v ∈ Neighbor(u)))

hl+1
u = ReLU(W lCONCAT (hl

u, n
l
u))

(6)

7 Scalable G2SAT with Two-phase Generation Scheme
• Millions of candidate pairs, thus infeasible to compute Z.

• Introducing random variable u, v as random nodes with binary conditions (to merge or not to merge),
relaxing p(Gi|Gi−1) to a joint distribution

p(Gi, u, v|Gi−1) = p(u, v|Gi−1)p(Gi|Gi−1, u, v)

= p(u, v|Gi−1)p(NodeMerge(u, v,Gi−1)|Gi−1, u, v)

= Uniform({(u, v)|∀u, v ∈ VGi−1

2 })Bernoulli(σ(hT
uhv)|u, v)

(7)

• We needn’t perform normalization since assignment of bernoulli distribution is only 0 or 1.

8 Training G2SAT
• The essence of training stage is performing node splitting.

• Sampling: Choose a random node s with Deg(s) > 1 to split into (u+, v+), which is regarded as positive
samples. Randomly select another node v− ∈ VGi−1

2 {u+, v+} and (u+, v−) forms negative samples.

• Cross-Entropy Loss for classification: to merge or not to merge

L = −Eu+,v+ [log(σ(hT
uhv))]− Eu+,v− [log(1− σ(hT

uhv))] (8)

• Training iterations terminate till all the remaining clause node Deg(s) = 1, or a clause is connected
with a single literal in another word.

• The set of trees is saved as G0, which serves as initialization for inference phase.

9 G2SAT at Inference Phase
• The essence of inference stage is performing node merging.

• Inintialized by G0 and holds the same iteration with training phase.

10 Experiment
• This paper evaluates if G2SAT preserves the properties of training data (from SATLIB and past SAT

competetion) by graph statistics and SAT solver performance.

• Three properties for Graph statistics:

1. Scale-free structure parameters αc and αv:
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– The arity of nodes seems to follow a power-law distribution. Let k be the occurences of a
variable

fpow(k) =
α− 1

kmin
(

k

kmin
)−α (9)

There is another assumption that the arity of nodes follows an exponential distribution.

fexp(k) = (1− e−β)e−β(k−kmin) (10)

– Since real LCGs doesn’t actually follow any of these distributions, distributions of some fami-
lies of LCGs have high similarity to them. CMU, IBM follows power-law distribution both in
consider of clauses αcand number of occurences αv. 3-CNF formulas fit exponential distribu-
tion better. Hence, we can measure the similarity between the structures of LCGs from these
families via α and β respectively.

2. Modularity is the difference between edges falling into a group and the expected number in an
equivalent network with edges placed randomly. Let Aij denote the number of edges between
vertices i, j with degrees ki, kj , si is 1 when i belongs to a group of the bipartite graph while -1
when i belongs to another group, while the network contains m edges and n vertices. Modularity
Q is

Q =
1

4m

∑
ij

(Aij −
kikj
2m

)sisj (11)

Let Bij = Aij − kikj

2m , we can rewrite Q as

Q =
1

4m
sT Bs (12)

where B is a real asymmetric matrix and s is column vector whose elements are si. Then Q can
be

Q =
1

4m

n∑
i=1

(uT
i s)2βi (13)

where βi is the eigenvalue corresponding to eigenvector ui of B.
When it comes to dividing a graph into multiple groups g of size ng, we add an additional ∆Q

∆Q =
1

4m
(
∑
ij

Bijsisj −
∑
ij

Bij) (14)

3. Clustering Coefficient is a measure of the degree to which nodes in a graph tend to cluster together,
taking temporal domain into consideration. Let Pm(t) be the possibility of two vertices connected
by an edge added at time t have m mutual neighbors and the graph contains N(t) vertices,

Pm(t) =
nm(t)

1
2N(t)[N(t)− 1]

Rm (15)

where nm(t) denotes the number of vertex pairs with m mutual neighbors just before the addition
of the edge at time t. Rm is the measure of clustering, namely the relative probability of two
vertices connected by the new edge, which is termporal independent.

Rm = A−Be−m/m0 (16)

where A, B and m0 are constants. Rm increases linearly when m is relatively small and the
clustering of the network increases monotonically with Rm.

Hence, we can measure the how much does the generated graph maintain the properties of training
data.

• By comparing the performance of SAT solvers both on real data and generated data, we can measure
the how much does the generated graph maintain the properties of training data as well.

• Training deep SAT solvers on generated data boosts their performance on real data.
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11 Summary
• The training objective of the model is to decide ”what node to merge”. In essence, the model learns

the intra-clause pattern and inter-literal pattern from training data.

• Training phase is node splitting while inference phase is node merging.

• To prune hypothesis space, G2SAT relaxes p(Gi|Gi−1) to p(Gi, u, v|Gi−1), thus transforming multino-
mial distribution to binary distribution.

12 Inspiration
• Decomposition: When the objective is hard to learn, we can solve the problem iteratively via interme-

diate objectives.

• Hybrid Model: We can use neural networks to obtain appropriate feature embeddings. This work
doesn’t exploit the reciprocation between statistical learning models and logical learning models.

• Reduce multinomial distribution to binary distribution.

• Reduce enumerative traversal in the heposythesis space to random selection when the operation is
commutative. (Maybe similar to changing sliding window to anchor boxes in CV?)
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