
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Program Synthesis
An Introduction

Yu-Zhe Shi

July 25th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

▶ Concepts of program synthesis.
▶ Domain Specific Language.
▶ Enumerative Search.
▶ Constraint Solving.
▶ Stochastic Search.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is Program Synthesis?

▶ Automatically.
▶ Find programs from underlying programming language.
▶ Satisfy user intent explained by constraints.
▶ Second-Order.
▶ Domain-Specific Language (constrast to General Purpose

Language).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dimensions

▶ User intent:
▶ Logical Specification between inputs and outputs.
▶ Input-output Examples.
▶ Step-by-step description (Trace).
▶ Partial program, relative programs.

▶ Search Space:
▶ Operators.
▶ Control Structure.

▶ Search Technique:
▶ Enumerative Search (bottom-up).
▶ Deduction (top-down).
▶ Constraint Solving.
▶ Statistical Techniques.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Road Map

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Established Researchers & Teams

▶ PROSE Team, Microsoft: Sumit Gulwani, Microsoft,
Obtained Ph.D. at UC Berkeley.
https://www.linkedin.com/in/sumit-gulwani/

▶ Sketch, MIT: Armando Solar-Lezama, CSAIL, MIT, Obtained
Ph.D. at MIT. https://people.csail.mit.edu/asolar/
(Solar-Lezama + J.B.Tenenbaum = Creativity!)

▶ STOKE, Stanford: Alex Aiken, CS, Stanford, Obtained Ph.D.
at Cornell. http://theory.stanford.edu/~aiken/

https://www.linkedin.com/in/sumit-gulwani/
https://people.csail.mit.edu/asolar/
http://theory.stanford.edu/~aiken/

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Task: Semantic Parsing

▶ StackOverflow Question Code Dataset (SQCD): Semantic
Parsing, English to Python.

▶ CoNaLa: The Code/Natural Language Challenge: Semantic
Parsing, English to Python.
e. g. {
"intent": "How do I check if all elements in a
list are the same?",
"rewritten_intent": "check if all elements in
list `mylist` are the same",
"snippet": "len(set(mylist)) == 1",
"question_id": 22240602
}

▶ WikiSQL: Semantic Parsing, English to SQL.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Task: Algorithmic Synthesis

▶ NAPS: Dataset containing preprocessed problems from
algorithmic competitions along with imperative descriptions
and examples.
e. g. [
input = [1, 2, 5, 4, 6, 3],
output = [1, 4, 9, 16, 25, 36]
]

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Task: Planning

▶ Karel Language and Benchmark: Robot planning.

▶ Abstracting and Reasoning Challenge: Imitation Learning.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

PBE vs. PBD

▶ Programming by Example: A single input-output example
factorial(6) = 720.

▶ Programming by Demonstration: An example with trace
factorial(6) = 6*(5*(4*(3*(2*1))))=720.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenges

▶ How do you find a program that matches the observation?
▶ How do you know the program you found is the one you were

actually looking for?
▶ Intractability of Programming Space: Exponential growth of

non-trivial search space.
▶ Diversity of User Intent: Specification is as sophisticated as

programming; User intent is ambiguous.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Domain Specific Language

▶ Subsets of general-proposed language.
▶ No side effects(Pure functions).
▶ Concise and Experissive.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Abstract Syntax Tree

▶ The most common representation of a program.
▶ expr:=term | term+expr

term:=(expr) | term*term | N
▶ data AST = Num Int | Plus AST AST | Times AST AST

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Context-free Grammar

Definition
Context-free Grammar G = (V,Σ,R,S)
▶ V is a finite set of non-terminal symbols.
▶ Σ is a finite set of terminal symbols.
▶ R is a finite set of rules of the form X → Y1Y2 . . .Yn, X ∈ V,

n ≥ 0, Yi ∈ (V ∪ Σ)

▶ S is a distinguished start symbol.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CFG: Left-most Derivations

Definition
Derivations s1s2 . . . sn
▶ s1 = S
▶ sn ∈ Σ∗(Σ∗ ⊆ Σ)

▶ si is derived from si−1 by picking the left-most non-terminal X
in si−1 and replace X by the rule in {X → β} ∈ R

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Probabilistic CFG

▶ τG is the set of all possible derivations under grammar G.

Definition
PCFG
▶ G = (V,Σ,R,S)
▶ Parameter q, ∀X ∈ V,

∑
α→β∈R:α=X q(α → β) = 1 where

q(α → β) denotes the conditional probability of choosing rule
α → β in a derivation.

▶ For derivation t in τG containing rules α1 → β1, . . . , αn → βn,

p(t) =
n∏

i=1
q(αi → βi) (1)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An Example

▶ V = {Init,Op,Dest,Num,Equal,Predecess,Success}
▶ Σ = {0, 1}
▶ R, q = {S → Init : 1, Init → Num : 0.5, Init → Op : 0.5,Op →

Equal : 0.5,Op → Predecess : 0.25,Op → Success : 0.25, }
▶ S

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Enumerative Search
▶ Top-Down Tree Search: From root to input specification.
▶ Bottom-Up Tree Search: From leaf to output speciication.
▶ Bidirectional Search: Combination of top-down and

bottom-up search.
▶ Offline Exhaustive Enumeration and Composition: retrive the

program mapping to input-output pair.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: Bottom-Up Search

▶ Guiwani et al, Recursive Program Synthesis, CAV’13.
▶ Start with terminals!
▶ Prune the set of primitives at every step by eliminating those

that are deemed to be observationally equivalent.
▶ Observationally Equivalent: Expressions that have the same

output given same input.
▶ Drawbacks: Scalability.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: Synthesis through Unification (STUN)
▶ Alur et al, Synthesis through Unification, CAV’15.
▶ No longer looking for a program thats works for all inputs in

one shot.
▶ Search for multiple programs that work for different situations.
▶ An initial best-effort search to produce a program that works

correct on some inputs.
▶ Input fails: improve on current program OR reconstruct a new

program.
▶ Searching heuristic: When fail on an input, search for a better

solution with that input.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: Top-Down Search

▶ Feser et al, Synthesizing data structure transformations from
input-output examples, SIGPLAN’15.

▶ Using the production rule of the grammar to generate
candidate programs.

▶ Expand the expressions. First prune the expressions with the
undesired types.

▶ Further pruning with additional deduction rules: Derive rules
from known functions to unknown subexpressions:
▶ Rules tell you that a candidate is not going to work.
▶ Rules tell you that how to propagate input/outputs to

subexpressions.
e.g. map x lambda y.expr, if the input-output doesn’t have
same length...

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Constraint Solving

Encoding the specification and syntactic program restrictions into
a single formula.
▶ Component-Based Synthesis:

▶ End-to-end SAT encoding.
▶ Sketch generation and completion: Program with holes.

▶ Solver-aided Programming: high level program argumented
with constructs.

▶ Inductive Logic Programming.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: Sketch

▶ Armando Solar-Lezama, The Sketching Approach to Program
Synthesis, APLAS’08; Armando Solar-Lezama, Program
sketching, IJSTTT’13.

▶ Parametric Program: different values of the parameters
correspond to different programs in the space.

▶ Unknown Constants: ??
▶ Generator Function: generator int gen(int i){if(??)

return i*?? + ??;}
▶ Symbolic Execution: Run a program and produce symbolic

values and constraints.
▶ Structural Hashing: Identify common sub-expressions and

represent them in the same node.
▶ Representation of sets: Represent set Φ as predicate PΦ(ϕ) iff

ϕ ∈ Φ

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: Sketch
▶ Transform constraints to Conjunctive Normal Form.
▶ One-hot encoding indicating the true value.
▶ Solving SAT Problems: SAT Solvers based on DPLL.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Improvements on SAT Solver

▶ Conflict Driven Clause Learning(CDCL), GRASP SAT Solver:
▶ When contradict, trace back a small set of assignments that

lead to the contradiction.
▶ Define a conflict graph that shows the possible conflict clauses.

▶ Two Literal Watching, Chaff SAT Solver:
▶ There is no need to keep track of all unassigned literals

because only the last two unassigned literals determines the
’action’ of the clause.

▶ For every clause, we keep track of two literals that haven’t
been set.

▶ Heuristic on selecting variable, Variable State Independent
Decaying Sum (VSIDS):
▶ Keep a score for every variable that is additively dumped based

on how much it is used.
▶ Decayed over time. (Expontional Moving Average)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

SMT Solver

▶ Satisfiability Modulo Theory:
▶ Goal: Either Find an assignment to satisfy a logical formula or

prove the unsatisibililty of a logical formula.
▶ Leverage SAT Solver.

▶ Initially take all predicates and replace them with boolean
variables.

▶ Eager Approach: Explicitly generate boolean constraints.
▶ Lazy Approach: Get a solver that interacts with the SAT solver

and incrementally add constraints to the boolean abstraction.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

NEO: Conflict-Driven Learning
▶ Feng et al, Program Synthesis using Conflict-Driven Learning,

PLDI’18.
▶ In SAT/SMT solving, NEO learns a root reason for the failure

of branch search (conflict) and add it to the constraints to
avoid similar mistakes.

▶ e.g. [1,2,3]→[2,4], eliminates functions like map, sort,
reverse, which are called equivalent modulo conflict.

▶ Key Procedures:
▶ Decide: which hole to fill and how to fill it with DSL.
▶ Deduce: Keep Track of use Lemmas.
▶ Conflict Analyze: Find the root cause (minimal unsatisfiable)

of the failure and learn new lemmas.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stochastic Search

▶ Markov Chain Monto Carlo.
▶ Genetic Programming.
▶ Machine Learning.
▶ Neural-Guided Synthesis.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: MCMC-MH (Stochastic SyGus Solver)
▶ Alur et al, Syntax-guided synthesis, FMCAD’13.
▶ Score function of expressions: Distribution over the domain of

programs.
π = e−0.5C(e) (2)

where C(e) denotes the number of examples for which e is
correct.

▶ The probability of acception:

PA(x∗|xt−1) = min

(
1, p(x∗)P(xt−1|x∗)

p(xt−1)P(x∗|xt−1)

)
) (3)

, in this case
PA(e, e′) = min

(
1, π(e)

π(e′)

)
(4)

▶ Shortcomings: Scoring Function isn’t precise enough; The
proposal distribution only make big changes to the program.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: More Specified AST Synthesis
▶ Schkufza et al, Stochastic superoptimization, ASPLOS’13.
▶ 5 kinds of probability.
▶

π(Prog) = exp(−β(Crct(Prog,Prog′)) + perf(Prog,Prog′))
(5)

▶ Correct measures the Hamming Distance between outputs;
Performance serves as cost functions. First ignore the
Performance term to obtain large steps.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Search Process with an Interpreter
▶ Ellis, Solar-Lezama and Tenenbaum, Write, Execute, Assess:

Program Synthesis with a REPL, NIPS’19.
▶ Challenge: Tiny changes in syntax lead to huge changes in

semantic.
▶ Read-Evalutaion-Print-Loop: propose new code to write,

assess the prospects of codes written-so-far.
▶ REPL serves as a bridge to apply Markov Decision Process

jointly on both syntax space and semantic space.
▶ Sequential Monte Carlo Method: Maintaining the

policy-desired programs.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stochastic Search: Genetic Programming

▶ Katz et al, Genetic Programming and Model Checking:
Synthesizing New Mutual Exclusion Algorithms, ATVA’08.

▶ 4 operations: crossover, mutation, duplication, deletion.
▶ Mutation: Random change.
▶ Crossover: Useful subprograms from other programs.

▶ Hierarchical programs vary on different sizes and shapes.
▶ A set of terminal and function symbols.
▶ Fitness measure.
▶ Search parameters: population, number of expressions,

probability of the 4 operations.
▶ Termination criterion.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Crossover

Figure: Crossover

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Mutation

Figure: Mutation

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stochastic Search: Machine Learning
▶ Menon et al, A Machine Learning Framework for

Programming by Example, ICML’13.
▶ Learn the weights for the rules R in PCFG G.
▶ The weights conditioned on the input-output examples are

trained offline.
▶ Hand-crafted features. e.g. sort_cue whether the output

strings are sorted.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bayesian Program Synthesis

▶ Form our belief in the relative likelyhood desired by the user
(priori) and update our belief with new evidence (I/O
examples).

▶ A strict generation of the original program synthesis
formulation. Let O be Observation Evidence, f denote desired
program

P(O|f) =
{

U(e), ∀e ∈ O,Con(O ∪ f)
0, ∃e ∈ O,¬Con(O ∪ f)

(6)

▶
P(f|[ini, outi]) ≈ P(f)

∏
[ini,outi]∈E

P(outi|f, ini) (7)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unsupervised Learning
▶ Ellis, Solar-Lezama and Tenenbaum, Unsupervised Learning

by Program Synthesis, NIPS’15.
▶ Both the inputs and the functions are unknown!
▶ Learning noisy Visual Concepts.
▶ Objective of Unsupervised Learning:

min
f,Ii∈E

− logPf(f)−
N∑

i=1

(
logPx|z(xi|f(Ii)) + logPI(Ii)

)
(8)

where the three terms are length of generated program, data
reconstruction error and input encoding length respectively.

▶ Generating SMT Formulae that computes description length
of program and the output given an input.

▶ Additional Constraint on SMT Solver: Generating description
as short as possible.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unsupervised Learning: To Marginalize or Not to
Marginalize?

▶ Should we marginalize over the inputs or not?
▶ Marginalize: find the P(f, [ini]) that maximizes P(f, [ini]|[outi]).
▶ Not Marginalize: maximize

P(f|[outi]) =
∑

[ini]
P(f, [ini]|[outi])P([ini])

▶ Optimize the joint distribution!

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: Length Minimization

▶

P(f) =

1
Ze−len(f), f ∈ F

0, otherwise
(9)

▶ Conventional Bottom-Up Search guarantees the minimization
of height of the search tree.

▶ However, the improvements of Bottom-Up Search and
Top-Down Search no longer guarantees the minimization.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algorithm: Bayesian Sampling
▶ Ellis, Solar-Lezama and Tenenbaum, Sampling for Bayesian

Program Learning, NIPS’16.
▶ Form the synthesis problem into SAT Solving problem.

Instead of search for one program, approximately sample the
program space and incrementally upgrate the SAT Solver.

▶ The example follows p-distribution, we aim to sample a q(·) in
program space that has low KL-Divergence from p(·).

▶ d serves as the threshold of description length of the program.

q(x) ∝
{

2−|x|, |x| ≤ d
2−d, otherwise

,A(x) ∝
{

1, |x| ≤ d
2−|x|+d, otherwise

(10)
where A(x) is the acception ratio of an expression.

▶ y denotes the auxiliary assignments of program space where
yi = 1 if |xi| ≤ d, r(x) =

∑
y r(x, y), q(x) = A(x)r(x)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stochastic Search: Neural Program Synthesis

▶ Key idea: Developing a continuous representation of the
atomitic operations of the network.

▶ End-to-end training/Reinforcement Learning.
▶ Shortcomings: Weak Interpretibility, Resource Consuming.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Neural FlashFill

▶ Parisotto et al, Neruo-Symbolic Program Synthesis, ICLR’17.
▶ Discoverying input substrings copied to output:

Cross-Correlation based encoder presenting a continuous
representation between I/O.

▶ Recursive-Reverse-Recursive Neural Network (R3NN):
Constructing programs incrementally.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Neural FlashFill

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Neural RAM

▶ Kurach and Andrychowicz et al, Neural Random-Access
Machines, ICLR’16.

▶ Learns a circuit composed with a given set of modules.
▶ Obtain continuous representation of all modules, learn a

controller.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Neural RAM

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Deep Coder
▶ Balog et al, Deep Coder: Learning to Write Programs,

ICLR’17.
▶ Encode the features of specification, then decodes it to a

vector, where every dimension corresponds to the probability
of an element of the grammar.

▶ Learns a distribution over the candidate functions.
▶ Use the distribution to guide a depth-first top-down

enumerative search.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Learn from Noisy Example

▶ Devlin et al, RobustFill: Neural Program Learning under Noisy
I/O, ICML’17.

▶ An end-to-end differentiable version of FlashFill that’s trained
on a large volume of synthetically generated tasks.

▶ Attention RNN Representation of I/O examples.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Infer Sketch

▶ Nye, Hewitt, Tenenbaum and Solar-Lezama, Learning to Infer
Sketch, ICML’19.

▶ Specifications that human can most easily provide.
▶ Generating Sketch from example or nature language:

seq-to-seq-RNN with Attention.
▶ Enumerative search guided by a recognizer that predicts the

likelihood of the program filling in the hole.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reinforcement Learning

▶ Verma et al, Programmatically Interpretable Reinforcement
Learning, ICML’18.

▶ Represent policy using domain specific language.
▶ Firstly learn a neural network by DRL to represent the policies.
▶ Then produce local search over programmatic policies that

minimize the L2 distance from neural oracle (or most closely
imitates the behavior of its neural counterpart).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graphics Program

▶ Ellis, Solar-Lezama and Tenenbaum, Learning to Infer
Graphics Programs from Hand-Drawn Images, NIPS’18.

▶ Learn to convert hand drawings into LATEXprograms.
▶ CNN learning hand drawings as ’primitives’, which serves as

specification.
▶ Bottom-up Search Program Synthesis by learning a search

policy that obtains a trade-off between search space and cost
minimization.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion

▶ The Three Methods (Enumerative Search, Constraint Solving,
Stochastic Search) are Combining!

▶ Cooperate with ABL!
▶ Program Invention?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References

▶ Guiwani et al, Recursive Program Synthesis, CAV’13.
▶ Alur et al, Synthesis through Unification, CAV’15.
▶ Feser et al, Synthesizing data structure transformations from

input-output examples, SIGPLAN’15.
▶ Armando Solar-Lezama, The Sketching Approach to Program

Synthesis, APLAS’08.
▶ Armando Solar-Lezama, Program sketching, IJSTTT’13.
▶ Feng et al, Program Synthesis using Conflict-Driven Learning,

PLDI’18.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References

▶ Alur et al, Syntax-guided synthesis, FMCAD’13.
▶ Schkufza et al, Stochastic superoptimization, ASPLOS’13.
▶ Ellis, Solar-Lezama and Tenenbaum, Write, Execute, Assess:

Program Synthesis with a REPL, NIPS’19.
▶ Katz et al, Genetic Programming and Model Checking:

Synthesizing New Mutual Exclusion Algorithms, ATVA’08.
▶ Menon et al, A Machine Learning Framework for

Programming by Example, ICML’13.
▶ Ellis, Solar-Lezama and Tenenbaum, Unsupervised Learning

by Program Synthesis, NIPS’15.
▶ Ellis, Solar-Lezama and Tenenbaum, Sampling for Bayesian

Program Learning, NIPS’16.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References

▶ Parisotto et al, Neruo-Symbolic Program Synthesis, ICLR’17.
▶ Kurach and Andrychowicz et al, Neural Random-Access

Machines, ICLR’16.
▶ Balog et al, Deep Coder: Learning to Write Programs,

ICLR’17.
▶ Devlin et al, RobustFill: Neural Program Learning under Noisy

I/O, ICML’17.
▶ Nye, Hewitt, Tenenbaum and Solar-Lezama, Learning to Infer

Sketch, ICML’19.
▶ Verma et al, Programmatically Interpretable Reinforcement

Learning, ICML’18.
▶ Ellis, Solar-Lezama and Tenenbaum, Learning to Infer

Graphics Programs from Hand-Drawn Images, NIPS’18.

